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A novel and efficient ionic liquid supported synthesis
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Abstract—A novel and efficient ionic liquid supported synthesis of oligosaccharides with a general protocol of coupling and puri-
fication is described. The method represents an attractive alternative to the classical solid- and fluorous-phase synthesis strategies
and combines the advantage of performing homogeneous chemistry on a relatively large scale while avoiding large excesses of
reagents.
� 2006 Elsevier Ltd. All rights reserved.
Increased awareness of the biological and therapeutic
importance of oligosaccharides has stimulated the devel-
opment of efficient methods for synthesis of these
compounds. Different strategies for the assembly of oli-
gosaccharides on polymeric supports have proven to be
the most challenging task and have recently received
much attention.1 The solid-phase approach is attractive
due to the facile purification process of removing the ex-
cess reagents and side products, which allows for the
ease of product isolation and makes automation possi-
ble.2 On the other hand, the soluble polymers such as
polyethylene glycol (PEG), polyvinyl alcohol and other
ingenious variants of these polymers have received con-
siderable attention because of their homogeneous phase
chemistry strategies, which have been employed success-
fully in the synthesis of oligopeptides2 and oligosaccha-
rides.3 However, there were some limitations such as low
loading capacity, limited solubility during the reaction
processes, aqueous solubility, and insolubility in ether
solvents.4 Recently, ionic liquids (ILs) have attracted
considerable interest as environmentally benign reaction
media because of their many fascinating and intriguing
properties.5 Numerous chemical reactions, including
some enzymatic reactions, can be carried out in ionic liq-
uids.6 An attractive feature of ionic liquids is that their
solubility can be tuned readily. Therefore, phase separa-
tion from organic solvent or aqueous phase is allowed
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depending on the choice of cations and anions. This sug-
gests the possibility of using these small molecular ionic
liquids as soluble supports for organic synthesis. Sub-
strates anchored on ionic liquids are expected to retain
their reactivity, as in solution reactions, and allowed
the use of conventional spectroscopic analysis during the
synthetic process. Several groups have demonstrated
the feasibility of ionic liquid supported organic synthesis
of small molecules7 and peptides,8 in which the excess
reagents and by-products in the multistep reactions
can be removed easily by simple washing with a solvent.
Herein, we describe an ionic liquid supported synthesis
of oligosaccharides. To the best of our knowledge, this
is the first report on the synthesis of oligosaccharides
utilizing IL support strategy.

As shown in Scheme 1, the 4-OH of phenyl 2,3-di-O-acet-
yl-6-O-tert-butyldimethylsilyl-1-thio-b-DD-glucopyrano
side (1), which was prepared from DD-glucose in six steps
according to the published methods,9,10 was esterified
with chloroacetyl chloride in the presence of pyridine.
The resulting ester 2 was immobilized to N-methylimi-
dazole via a nucleophilic substitution reaction to give
the ionic liquid bounded glucoside 3. Then the anion
Cl� of 3 was exchanged to anion PF6

� to afford the
ionic liquid bounded glucoside 4. The subsequent depro-
tection of TBDMS group was readily performed using
concentrated HCl at room temperature to give the cor-
responding glucoside 5. With ionic liquid supported 5
in hand, we coupled it with different glycosyl donors
6a–f, that had been activated with trichloroacetimidates,
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7a: R = Glu,  92%
7b: R = Rha,  94%
7c: R = Xyl, 90%
7d: R = Man, 91%
7e: R = Fuc, 89%
7f: R = Mal, 85%

vi

8a: R = Glu, 93%
8b: R = Rha, 92%
8c: R = Xyl, 95%
8d: R = Man, 91%
8e: R = Fuc, 90%
8f: R = Mal, 95%

Scheme 1. Reagents and conditions: (i) ClCH2COCl (1.2 equiv), Py (1.5 equiv), CH2Cl2, 0 �C, 30 min; (ii) N-methylimidazole (1.0 equiv), CH3CN,
N2, 80 �C, 12 h; (iii) KPF6 (1.0 equiv), CH3CN, rt, 24 h; (iv) concd HCl, THF, 15–30 min; (v) 6 (3.0 equiv), TMSOTf (cat.), 4 Å MS, CH2Cl2, N2,
�40 to 0 �C, 2 h; (vi) saturated aq NaHCO3 (2 mL), TBAB (0.1 g), Et2O, 15 min.

Table 1. Ionic-liquid-supported synthesis of oligosaccharides
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Table 1 (continued)

Entry R Product Yielda (%) Purityb (%)
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a Isolated yields are based on the conversion of 5.
b Purity are detected by HPLC.
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to provide five disaccharides 7a–e and one trisaccharide
7f. Finally, cleavage of the ester linkage with saturated
aqueous sodium bicarbonate solution in the presence
of TBAB and solvent extraction gave the corresponding
free disaccharides 8a–e and trisaccharide 8f in high
yields with excellent purities.11 The results are summa-
rized in Table 1.

As a suitable model reaction for ionic liquid-phase-sup-
ported organic synthesis, we have chosen to use chloro-
acetyl chloride bound to the ionic liquid moiety. It was
stable in a series of reactions and it could be cleaved in a
short time (15 min) under mild conditions (e.g., TBAB/
aq NaHCO3/Et2O). After being unbound, the oligosac-
charide products were transferred into organic phase
giving high purity as shown in HPLC analysis, so fur-
ther chromatography is not necessary.

All of the ionic liquid supported oligosaccharides pre-
pared thus far are soluble in polar organic solvents
such as acetone, acetonitrile, methanol, chloroform,
and dichloromethane, but are essentially not soluble in
diethyl ether or hexane. During the whole synthetic
sequence, every IL-bounded intermediate could be puri-
fied by consecutively washing with diethyl ether and
EtOAc, in which the excess reagents and by-products
were removed. It is noteworthy that all of the intermedi-
ates, including the IL-bounded saccharides, and final
products could be confirmed with 1H NMR, 13C
NMR and MS in our procedure.12 The mass spectra
of the ionic liquid supported saccharides 3–7 were help-
ful for the structural characterization because the peak
corresponding to the cation bearing the saccharides was
detected easily as the most intense peak in the spectrum.

In summary, we have developed a novel ionic liquid sup-
ported synthesis of oligosaccharides. Using this proce-
dure, the intermediates could be purified by simple
washing. This strategy provides a fast and efficient ap-
proach to diversify the oligosaccharides for biological
testing. Our method represents an attractive alternative
to the classical solid- and fluorous-phase synthesis strat-
egies and combines the advantage of performing homo-
geneous chemistry on a relatively large scale while
avoiding large excesses of reagents. Expansion of the
method presented here towards differently functional-
ized ionic supports and the synthesis of more complex
target molecules are currently being pursued.
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98.0 (C-1, Rha), 128.4, 129.2, 132.4, 132.6, 169.7, 170.3,
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